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Propagation of relativistically intense laser pulses in nonuniform plasmas
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(Received 10 October 1997

We consider the interaction of relativistically intense short laser pulses in a cold-electron—ion plasma.
Starting with the fully relativistic equations, we derive, for pancakelike-shaped pulses, a one-dimensional
nonlinear Schrdinger equation for arbitrary pulse amplitudes. We show that relativistic effects change the
pulse shape along its propagation. In the weakly relativistic case, these pulses can be adequately described by
soliton-type solutions. Moreover, plasma inhomogeneities lead to pulse acceleration, which creates radiation
fields similar to those of an accelerated charged particle. Two types of waves are emitted by these accelerated
laser pulses: low-frequency electromagnetic waves and electron plasma wake fields. Different kinds of mecha-
nisms leading to radiation are identifi§®1063-651X98)00909-X]

PACS numbgs): 52.40.Nk, 52.35.Mw

I. INTRODUCTION laser pulse$27]. We still do not know how to describe the
The successes obtained in recent times by hiah oWeervolution of relativistically intense short pulses in an inho-
y high p mogeneous plasma. Yet another difficult problem is the defi-

laser technology, pointing to Peta-Watt lasers in the N€ahition of the shape of the laser pulse after an interaction.

future, have opened fields for experimental research in thg\Iso, the radiation of low-frequency electromagnetic waves

range of laser field energies comparable to, or exceeding, tfgey laser beams is not well understood

elegtron rest mass energy. The eIect'romagn'etlc .radlatlon In nonrelativistic plasmas, some of the main features of
em'ttEd by cosmic objectsuch as galactic nuclgl, radlo gal- soliton acceleration are well knowi28,29. In particular, a
axies, or quasasmay serve as a source for similar strong g4jiton moving with acceleration can, like a charged particle,
field conditions in astrophysics. When such strong radlatlorémit ion acoustic wave$31]. The generation of Alfe
acts on a plasma, the electron mass becomes dependentQgyes by Langmuir solitons was also considefad]. The
the amplitude of the pumping waves, leading to considerablgg|ated problem of emission of low-frequency electromag-
changes in the dynamical plasma behavior. netic waves by a short laser pulse in a stratified rarefied
The interaction of relativistically intense electromagneticplasma was also considered in the nonrelativistic approxima-
waves with a plasma has been a subject of considerable ifion [31,37.
terest[1-8]. The relativistic motion of the electrons leads to  In the present paper we shall consider the interaction of a
the formation of a different type of solitor}8], relativistic  relativistically intense short laser pulse with a cold-electron—
modulational and filamentational instabilitig0—-13, self- ion inhomogeneous plasma, assuming that the ions are at
focusing[6,14], and harmonic generatidd5|. The relativis- rest. In three dimensions, the pulse shape can significantly
tic effects occurring in self-focusing can also lead to plasmahange along propagation and is very difficult to describe.
compression in the region of the moving fodd$]. Stochas- We will restrict our analysis to pancake-type pul$pslses
tic acceleration of electrons moving in strong wave fields carwhose transverse length is much longer than longitudinal
also occur{17,1§. length because it was show] that for such a situation the
Another interesting aspect of strong nonlinear lasershape distortion in the direction perpendicular to the pulse
beam-plasma interactions is the possibility of generatingrropagation can be neglected. Taking this into account, we
large amplitude plasma wavethe so-called wake field)s could derive a one-dimensional ScHimger equation for an
[19-25. These large electrostatic fields can then interactrbitrary laser pulse amplitude. Using this equation and as-
with the nearly resonant electrons and accelerate not only theuming a slightly relativistic nonlinearity, we obtained accel-
electrons, but also the photof26]. erated soliton solutions. Moreover, such accelerated soliton
However, in spite of the fact that a great deal of work haslaser pulses can excite electron plasma waves as well as low-
been devoted to the relativistic effects in plasmas, we are stifrequency electromagnetic waves.
unable to give answers to many fundamental questions, in The content of this paper is the following. In Sec. II,
particular, to the self-consistent stationary solutions forstarting from Maxwell's equations and the electron equations
strong relativistic waves in the two- and three-dimensionabf motion, we derive two sets of equations for the fast mo-
cases, even in the weakly relativistic limit. Another outstand-tion, associated with the laser field oscillations, and for the
ing problem is the definition of the group velocity of the slow motion, due to ponderomotive force effects. In Sec. Il
we then derive the set of equations adequate for the descrip-
tion of the propagation of pancakelike pulses. In Sec. IV we
*Present address: Thilisi State University, Chavchavadze 3take the weakly relativistic limit and derive the correspond-

Thilisi, Georgia. ing accelerated soliton solutions. In Sec. V we discuss the
"Present address: Department of Physics and Astronomy, Univerarious possible mechanisms for electron plasma wave exci-
sity of California, Los Angeles, Los Angeles, CA 90095. tation and for transverse electromagnetic radiation by the ac-
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celerated soliton pulse. Finally, a brief summary of our re- JE (925 P
sults is given in Sec. VI. —e—=—+mE—Vy.
g e pe mczatVy (11)
Il. BASIC EQUATIONS R .
. ) ) ) Obviously, Eq.(10) allows us to writeV X p=(e/c)B. From
Let us study the interaction of circularly polarized elec- gqgs (1), (2), and(9)—(11) we obtain the following equation

tromagnetic waves with the plasma electréihe ion motion  for the electron momentum perturbation associated with the
is neglecteyl by using Maxwell's equations complemented g|ectromagnetic wave pulse:

by the electron fluid equations
. 1p  a. Amé?

. . 10E A4m. V2pi— — —-m—=Vy= np (12
= —4— 2 2 !
VXB=c <l ) c? ot ot mcy
1B wherep=p,+p, and subscript$ andt denote the longitu-
VXE=———, (20 dinal and the vortex parts qf.
Let us now use dimensionless variables, defined by the
- following changes of notationp/mc—p, ep/mc@— ¢,
hd - enp g g 2
j=—emn=———, 3 n/ng—n, ro,/c—r, and wpt—t, where w,=(4meny/
my m)¥2 is the electron plasma frequency. Equatid®) can
S o now be written as
V.E=4me(ny—n), 4
. Pp 9. .
on - 2n V= —
E+V.(nv):oy (5) Vep P &tVY yp’ (13
9 . . . 1. . with y=(1+p?)*2
E+v-V p=-—elE+ m_(:ypx B|, (6) When the frequency of the laser pulsg is much larger

than the electron plasma frequeney, we can use the mul-

where y= V1T p2Im2c2, p=mo/I—o?c m s the elec- tiple time—sgale metho[B]. We write every physical variable
tron rest mass, and the electron temperature is zero. Inste&&a:<a>"_'a’ v_vhere the angu_lar brackets denote an average
of using Eq.(6) we describe the motion of an electron in an OVer & periodr= 2/ w,. We will assume that these averaged

electromagnetic field by the Hamilton-Jacobi equation values vary over much longer times, typicalty=2m/w,.
Under the condition

ﬁ—S+H—eq‘)—O 7) S
& , y= pz;;><<7>,

whereS is the action,H is the Hamiltonian function for a

particle in an electromagnetic field where( 7>:(1+pt2+<5>2)1/2 [14,15, we obtain for the time

e |2 averaged variables the evolution equations
H=C\/ 5+—A) +m?2c?, (8)
c 2
S SO L Y S
> > - > t - ’
andP=VS=p—(e/c)A is the generalized electron momen- at? ot $2
tum. Taking the gradient of Eq7), we obtain the equation
of motion of the plasma electrons in the form any - (n) .
—— V- —(p) =0, (15
I at )
E=—eE—m02Vy. 9) ) o
—(B) =—(E)=¥(»), (16)

Equation(9), which is equivalent to Eq6), is more appro-
priate for our calculations. Therefore, from now on our dis- )
cussion will be based on the set of equati@hs-(5) and(9). Vig=(n)- 1. (17)

We will assume that the plasma electrons are at rest be- ) ) ) . .
fore the arrival of the strong electromagnetic pulse, which! N€ €quations for the rapidly varying quantities are obtained
means that we can use the initial conditipfty,r)=0. Us- from Eq. (13
ing Eq. (9) we can rewrite Eqs(1) and (2) in terms of the

i, . p, (n).
momentump: 2p— th = %pt . (18
ﬁﬁ . edB 10
g P G (19 B=Vxp,, (19
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(95 R an arbitrary function describing the longitudinal pulse pro-
—=—E (200  file, to be determined later. The electron plasma density can

at be written as
wbere we h{ilve useg the dimeﬁnsionless variables defined by (n) =ng+An(z)+6n(r, ,zt), (29)
eB/mcw,—B and eEfmcw,—E. The fast transverse mo-
mentum can be represented by whereng is a constantAn(z) characterizes the inhomoge-

neity profile, andsn(r, ,z,t)=n, (r,)ny(z,t) is the pertur-
.1 . ~ ) bation associated with the ponderomotive force effects.
pt=—2(ex+ iey)p(r, ,zt)e'kor el ycc. (21

5

Ill. DERIVATION OF PROPAGATION EQUATIONS

and the amplitudep(r,,z,t) can be written app=ae'¥, FOR PANCAKE PULSES
where the quantitiea(r,z,t) and(r,,z,t) are real. From So far, we have derived the general equations governing
Eq. (16) we can also write for the longitudinal part of the pyise propagation in the relativistic regime. We now focus
slow motion our attention over pancakelike pulses. In this case, condition
(25) is valid and several different analytic results can be
20l =16 ~(9), (22 derved
gttt Substitutingp; from Eq. (26) in Eq. (18), multiplying the
resulting equation by, 2#r , dr, , and integrating over, ,
a | - we obtain
ﬁ<p2> =V, (¢ _<7>)- (23
2 (7+°‘9) [ PP
> N | _— _— = ni— ,
Let us now multiply Eq(22) by V, and Eq.(23) by V, . “olat " wg oz PI 9z ot? Pr=LAtRpmy= ey
Summing the resulting equations, we can easily[§ét (29
Vz{PD :VJ.<p|z>' (24) where we have used
» N2
This relation allows us to compar@' ) and (pl). If the ﬁ(pu)n\\:[l‘*'An(Z)]iJ p—L27TI'J_er_
averaged physical quantities change faster along the direc- BJo(7)

tion of propagation of the laser pulse than in the perpendicu-

L S ! ny(z,t) =pn,(r,)
lar direction (which is the case for pancakelike-shaped + f 27, dr (30)
pulses it follows from Eq. (24) that(p' ) <(p): B Jo (¥
I J—
(P) Az z Vgt 1. 25 B:f p22qr, dr, (31)
(py Arn

. o . . . andkq/wg=uvy is the “group” velocity along the axiz.
Such a condition is satisfied in a variety of different £, future use. we will also define

physical situations related to very short laser pulses, such as

self-focusing, self-channeling, or the generation of wake , 1
fields. We will further assume tha > (p))2, which means kLZEJ
that we can writg y) = (1+a?)2 Condition(25) also cor-

responds to assuming that the laser pulses change mainlytroducing new variablesg=z—v t,t) instead of ¢,t),
along the direction of its propagation and not in the perpengq. (29) becomes

dicular directions. Assuming that Eq25) stays valid, we

can then write 9 1 42 ZpH

. J
2i woﬁp”—'— ? &—gzp”‘FZUQMZ(ﬁn”— 1)p” , (33
g

ap. \?
E) 27Tridl’i. (32)

1 A
P=—=P.(r)p|(Z ) (e tieyekormea)  (26) .
N A | o where we havey,=(1-v) Y2 If we now usep;=aje'?,
then it follows from Eq.(33) that
where the perpendicular part of the vortex momentum per-

turbation can be written as, (r, = Vige "./2'), for an ini- d P\ L [ L ap  ab| ,|
tial value of the laser intensity defined by a Gaussian profile, 5t w0+v95_§ a +(9_§ ? 9E +vgﬁ ajr=0.
such that g
(34)
pgzagzloe’rf”g’gz”g, (27)  From here follows the conservation law
where £=2—[k,cw(K)]t, 1, \/x2+.y2, ro andlo are the f de wo+vg—¢ a?= const. (35
transverse and longitudinal pulse dimensions, py{d,t) is d€
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From Eq.(33) we can also derive an equation for the phase 52 a2
¢, which takes the form (? +1 6n:V27. (42)
2 2
—Zwoﬁa\ﬁ iz a_aH_ % a In this equation we can isolate that part of the density per-
at Vg 9&* 2 turbation that is concentrated in the pulse regim, from
5 the density perturbation associated with electron plasma
v 8y @ @a ) waves left behind the puldesually called the wake fie]dN:
9\ gtag  at gg "l
on=an,+N. (43
= [Bn”— 1]aH . (36)
Equation(42) then leads to
Equations(34) and(36) can be reduced to much simpler
expressions if we notice that we hawe,>|v4(d/d€)], a2 1/1 9 J 92
|ogplag|>1d ¢l ot|, and|dayld&|>|aaylat|, which are valid 5np=V275 2 EJF 75@

for underdense plasma and in the quasistationary approxima-

tion. Introducing a new variable= y,¢, we finally have Xaf(rl)af[x—;(t)], (44)
oal  d(a¢p —
A, 2122 o) = 2 2
@o g+ x| 9x @) =0 37) — _ 1 d—XVZiaZ. (45)
at? 2 dt?2 = ox
and
In the case of a pancakelike pulse, we can simplify @4)
g da [dp\? to
_2wOEaH+—X2 — 5 a||=[,8(a”)nH—1]a”. ) 2
(39 5np2 E yéaﬁ(rﬂﬁ aﬁ (46)

The solutions for these two equations can be taken in the

form a[x—x(t)] and ¢(x,t), wherex(t) is the coordinate and, from Eq.(44), we can write

of the center of the laser pulse. The time evolution of this —

coordinate will be determined in the following way. Since dNp=n, (1 )m[x=x(0)], (47)
the amplitude is assumed to be a function dependent only ojynere

the self-similar argumeny=x—x(t) and retaining only so-

lutions that vanish at infinity §—,a;=0), we conclude n (r)=al(r,). (48)

from Eq. (37) that
a.(37 A solution of Eq.(45) that satisfies the condition of the ab-

¢(x,t)=w0-;(t)x+ (1), (39) sence of a wake field at— —oo takes the form
whereF(t) is a function of time that can be considered ar—N(r't):
bitrary, for the time being, but will be specified later. Sub- 1 B [t a2
stituting Eq.(39) into Eq. (36), we obtain a closed equation - _ai(ri)_sf dt’dt”—zsin(t—t’)aﬁ[x—f(t’)].
for the amplitudesy: 2 x> J e dt
&Za” . 29( (49)
- 2,72 2 —
_ax2 - ZwOF(t)+w0x2+ 2wox—dtz a=[Bn—1]a. Now we can return to Eq(40) and consider the case
(40) of a weakly relativistic correction of the electron motion
in the electromagnetic field26). In this case, fora,
Thus, starting from the fully relativistic three-dimensional =ag, exp(—r?/2rd), we have
equations, we could derive, for pancakelike-shaped pulses, a
one-dimensional nonlinear Scliinger-type equation for ar- B —1=An(x)— }az
bitrary pulse amplitudes. ” 270t

1 2

IV. ACCELERATED SOLITON SOLUTIONS Then Eq.(40) becomes

2 2
We now consider the above equations in the weakly rela- J°q _ : 7> 5, dox(t)
tivistic limit, when the analytical solutions for the problem ax2 2woF (1) + wpx™+ 2w di2 3
can be carried out until the end. In this case, we can write ) X
ag, a
a? 1 5 ) _ —[AH(X)-FT nH—?” ]8.:0, (52
(v) =1-5=1-7ai(r)aj(x-x) (41

where we have used=(yZ/2)(5%af/x?). For the first in-
and from Eqgs(15—(17), we can write forén tegral of Eq.(51) we find
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day\? : — d’x| am
E —3§ 2woF(t )+w0X +2(1)0th aj Qq=—, (59

(1—y§a§laﬁ) = X—x(D
ch( d )

1
+zag af—An(x)af

8
where the soliton width is equal = 2+2/a,, a,, and the
fx 2d27 JAN(X") coordinate of the soliton center is, according to E§8) and
+ dx'| 20— + ———|a?=0. 52 i
» e oy = (52)  (56), given by
It follows from Eq. (52) that d2x 1 dAn
aF 2} X | 0
Jw dx| 2 d2 SAN(X) 0. 53 t Y o
. X wo dt + ax aH ( )

This equation shows that a plasma inhomogeneity implies an

If we assume that the maximum value of the amplitage acceleration of the soliton. Replacing E¢S9) and (60) in

L= . Eq. (49, we can find the explicit form of the density distri-
=2 corresponds to the point=x(t), we can obtain from iy associated with the emitted electron plasma waves.
Eq. (52) an equation for the functioR(t): We now analyze the soliton motion for specific forms of
the density profile of an inhomogeneous plasma. For a linear
profile defined byA n(x) =2w§acx, the motion of the soliton
center is described, according to E0), by the formula

. . —d?x —
2woF (1) + wix?+ 2w(2,xF +An(x)

1, , 1(x ,d%  aAn(x) _
=§aOLam+a—2 7oodX Zwoﬁ‘l'a—x aH(X) X(t):Xo+Ugt__act21 (61

1

m 2
(54)

where X, is the initial value of thex coordinate and the

Replacing this equation in E¢51), we obtain soliton acceleration is constant and equal -tax.. This

2a 1 _ a1 - means that, dependin_g on the sign of the elgctron_ density
_2_|§agia§q+ 205 x=X(t)]———+An(x)— An(x) gradient along the soliton propagation, the soliton will slow
X dt down if @.>0 and will accelerate whea . <0. The soliton
— velocity will then bev =vy— act.
+_J d X(t) a™x) | JAn(x)| , Another interesting case corresponds to a quadratic inho-
de2 ax | mogeneity An(x) = w3a?x?. Here Eq.(60) shows that the

soliton can oscillate periodically around a given poiatO.

a(z)L azau 5 We now write down the solution of Eq58) for the

1 gK—aH a,=0. (55 asymptotic conditioray(+%=)=day/dX|y .+.=0. The first
integral of Eq.(58) takes the form

We shall assume in the following that the density of the

inhomogeneous plasma changes over distances of the order 5[ U 2 ) o
of the width of the pulse. We can then use the expansion (1-au) ay —ui(1-u9)=0, (62
JAN(X) 05 o
An(x)=An(x) + (x—x) P (56)  where we have used= Vg0, 8n{2, Y= ag, amx/2+2, and

X=X u=aj/ay. Equation(62) is mterestmg because it leads to
solutions distinct from Eq(59) whenu?=1/a. After inte-

i ly the first th . If th iti
and retain only the first three terms. If the conditions gration, we get from Eq(62)

2>|2a2An f( x)afdx<l (57
an> — X—X)afdx< 2
T X=X an = H 1| VIZaut+yi-w s+ a¥An(a?J1-u?+ J1- au?)
\/1 au’—1-u
are satisfied, we obtain for the amplitudeapf _
, , 22 a2 =*[y-y(®]. (63)

2

8 _ aOlama + a&ag‘— YodoL 78] a=0. (59

92 g8 I a4l a4 HefTT If we take @=0, this equation reduces to EG9).

We can now use Ed63) to explore the different qualita-
If we neglect the last term in this equation, which describegive features of the soliton solutions. In Fig. 1 we plot the
the variation of electron density due to ponderomotive forcesolution of Eq.(63) as a function of time for the accelerated
terms, the relativistic corrections alone lead to the solitone.<0 and decelerated case.>0. As expected from the
solution analysis of Eq(61), the soliton accelerates far.<0 [Fig.



PRE 58 PROPAGATION OF RELATIVISTICALLY INTENSE ... 4895

1 ™ transverse electromagnetic low-frequency waleeghe gen-

08 AN eration of rotational currentdy ponderomotive forces or by
S parametric resonance in an inhomogeneous relativistic
0.6 i h L plasma. We shall show that, even for a homogeneous
= 04 ' N v plasma, relativistic effects due to a short laser pulse can gen-

: / r \\\\‘\ erate low-frequency rotational electromagnetic fields.

0.2 2 NN In order to write down the equations for the low-

L NN N frequency magnetic field, we take the rotational electromag-
R 0 R netic field of Eq.(13) and use Eq(10). The result is
y
FIG. 1. Soliton solution of E i - 7 (n) 3 Vi (n) i
.1 q63) as a function of the param 2_ 7 N/ (B) :V(_) x(p), (64)
eter & 0.0 (solid line), 0.5 (short-dashed line 0.99 (long-dashed a2 () (y)

line), 2.0 (medium-dashed lineand 3.0(dash-dotted ling

where
1(a)], but for ;>0 [Fig. 1(b)] the soliton velocity decreases
until the soliton is reflected and then bounces back with its (n) _1+An(x)+on(r ,x.t) 65
velocity now increasing. ' o ) J1+af(u)aﬁ(z,t)
Another important feature is the qualitative dependence of
the soliton solutions on the parameter For 0<a <1, the We shall consider Eq64) in two different cases. The first

solution is close to the usual solution given by E§9),  one corresponds to nonrelativistic laser pulses for which we
getting more peaked around the soliton centroiddotlose  can take(y) =1. We also assume thpin(x)|>|én|. Then
to 1. On the other hand, i#>1, cusp soliton solutions are the emission of low-frequency electromagnetic waves is due
obtained(Fig. 2). to the inhomogeneity of the electron plasma density or the
associated acceleration of laser pulses

V. RADIATION MECHANISMS - -

VIANn(x)]Xv#0, (66)
We shall now give a detailed description of the severalyhere the velocity is determined by EG.6).

different mechanisms of emission of low-frequency electro- 5, the other hand iAn(x)=0 (homogeneous plasia
magnetic waves by accelerated short laser pulses in a plasma,j if the variation of the densit§n due to the ponderomo-

We have already mentioned the possibility of excitation oftje force effects is negligible, the mechanism of electromag-
irrotational electric fields and the emission of electronqiic wave emission is a pure relativistic effect

plasma waves in an inhomogeneous plasma, as described by
Eqg. (49). Now we shall pay attention to the generation of 21 .

V—Xx{(p) #0. (67

()

It is then clear that low-frequency electromagnetic waves can
be emitted due to either electron plasma density inhomoge-
neity or relativistic mass correction effects. We also want to
mention that the resul67) is valid at a distance from the
focus of the laser pulse. In the focal regia¥,y) <dn and
the general expressiq®5) must be used.

Finally, we consider a short laser pulse such that its initial
intensity shape can be taken as a rectangular parallelepiped
with sidesry and eg. We assume that the electron mass is
modulated in time according to

m=mg(y) =mg[1+a3(1+ecos0t)]*2, (68

where € is the modulation depth anf is the modulation
frequency of the electromagnetic wave pulse. In this case, we
neglect the right-hand side of E@4) and assuming that the
electron density modulation is weak when compared to the
relativistic factor(y), Eq. (64) reduces to

d*(B) (B) _
dt? V1+aZ(1+ecos20t)

+K2(B)+ (69)

FIG. 2. Soliton evolution as a function of timé) accelerated |f12 furthermore, the_ modulation depth is small e.md we h?‘Ve
[a.=—0.10 in Eq.(61)] and (b) decelerated ¢.= +0.10) motion ~ age<<1, this equation takes the form of a Mathieu equation
of the soliton center forr=0.5 andv,=1. for which well known conditions exist for unstable modes.
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A similar equation for the parametric resonance case wasved for arbitrary pulse amplitudes. Using a purely analyti-
derived before[2] and studied numerically4,33]. It was cal approach, we were able to show that the pulse shape is
shown that unstable solutions for E§9) could be found for  changing along the propagation, due to relativistic effects. In
Q~Jk’c’+ w2p< wy, for the small amplitude casa§< 1).  the weakly relativistic limit, such pulses could be adequately
Q is the typical frequency of the emitted low-frequency elec-described by soliton-type solutions.
tromagnetic waves. For resonance the growth ratd is Moreover, we could show that the plasma inhomogene-
= %G(wglﬂz) ag. Time amplitude modulated pulses can thenities, not only induce the above-mentioned pulse shape varia-
emit low-frequency electromagnetic waves in a more effition, but also lead to pulse acceleration, which was previ-
cient way than the usual mechanisms based on inhomogeneusly observed for other kinds of pulses. Such a pulse
ity of the background plasma or ponderomotive force effectsacceleration produces radiation fields, similar to those of ac-

celerated charged particles. Different kinds of mechanisms of
VI. CONCLUSION radiation were identified, leading to the emission of low-

In this work we have considered the interaction of anfrequency electromagnetic waves and to the production of
intense and short laser pulse with an inhomogeneous plasm%ll.ec'[ron plasma wavesisually known as yvake f_lelds .
We have used a relativistic formulation but considered a  OUr results can eventually be useful in the interpretation
cold-electron—ion plasma and neglected the ion motion. of Iaser-plasnja'experlments and in th'e identification of the

We focused our attention on the important case of panpbserv_ed radlat_lon processes. In particular we suggest that
cakelike pulses, such as those currently produced in intendg€ soliton solutions for the pulse shape and its change along
laser-plasma interaction experiments. In this case, a ond@opagation, both derived here, can be identified in experi-
dimensional nonlinear Schiinger equation could be de- ments and numerical simulations in the near future.
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