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Propagation of relativistically intense laser pulses in nonuniform plasmas

N. L. Tsintsadze,* J. T. Mendonc¸a, and L. Oliveira e Silva†

GOLP, Centro de Fisica de Plasmas, Instituto Superior Tecnico, 1096 Lisboa Codex, Portugal
~Received 10 October 1997!

We consider the interaction of relativistically intense short laser pulses in a cold-electron–ion plasma.
Starting with the fully relativistic equations, we derive, for pancakelike-shaped pulses, a one-dimensional
nonlinear Schro¨dinger equation for arbitrary pulse amplitudes. We show that relativistic effects change the
pulse shape along its propagation. In the weakly relativistic case, these pulses can be adequately described by
soliton-type solutions. Moreover, plasma inhomogeneities lead to pulse acceleration, which creates radiation
fields similar to those of an accelerated charged particle. Two types of waves are emitted by these accelerated
laser pulses: low-frequency electromagnetic waves and electron plasma wake fields. Different kinds of mecha-
nisms leading to radiation are identified.@S1063-651X~98!00909-X#

PACS number~s!: 52.40.Nk, 52.35.Mw
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I. INTRODUCTION

The successes obtained in recent times by high po
laser technology, pointing to Peta-Watt lasers in the n
future, have opened fields for experimental research in
range of laser field energies comparable to, or exceeding
electron rest mass energy. The electromagnetic radia
emitted by cosmic objects~such as galactic nuclei, radio ga
axies, or quasars! may serve as a source for similar stro
field conditions in astrophysics. When such strong radiat
acts on a plasma, the electron mass becomes depende
the amplitude of the pumping waves, leading to considera
changes in the dynamical plasma behavior.

The interaction of relativistically intense electromagne
waves with a plasma has been a subject of considerable
terest@1–8#. The relativistic motion of the electrons leads
the formation of a different type of solitons@9#, relativistic
modulational and filamentational instabilities@10–13#, self-
focusing@6,14#, and harmonic generation@15#. The relativis-
tic effects occurring in self-focusing can also lead to plas
compression in the region of the moving focus@16#. Stochas-
tic acceleration of electrons moving in strong wave fields c
also occur@17,18#.

Another interesting aspect of strong nonlinear las
beam–plasma interactions is the possibility of genera
large amplitude plasma waves~the so-called wake fields!
@19–25#. These large electrostatic fields can then inter
with the nearly resonant electrons and accelerate not only
electrons, but also the photons@26#.

However, in spite of the fact that a great deal of work h
been devoted to the relativistic effects in plasmas, we are
unable to give answers to many fundamental questions
particular, to the self-consistent stationary solutions
strong relativistic waves in the two- and three-dimensio
cases, even in the weakly relativistic limit. Another outstan
ing problem is the definition of the group velocity of th
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laser pulses@27#. We still do not know how to describe th
evolution of relativistically intense short pulses in an inh
mogeneous plasma. Yet another difficult problem is the d
nition of the shape of the laser pulse after an interacti
Also, the radiation of low-frequency electromagnetic wav
by laser beams is not well understood.

In nonrelativistic plasmas, some of the main features
soliton acceleration are well known@28,29#. In particular, a
soliton moving with acceleration can, like a charged partic
emit ion acoustic waves@31#. The generation of Alfve´n
waves by Langmuir solitons was also considered@30#. The
related problem of emission of low-frequency electroma
netic waves by a short laser pulse in a stratified rare
plasma was also considered in the nonrelativistic approxi
tion @31,32#.

In the present paper we shall consider the interaction o
relativistically intense short laser pulse with a cold-electro
ion inhomogeneous plasma, assuming that the ions ar
rest. In three dimensions, the pulse shape can significa
change along propagation and is very difficult to descri
We will restrict our analysis to pancake-type pulses~pulses
whose transverse length is much longer than longitud
length! because it was shown@8# that for such a situation the
shape distortion in the direction perpendicular to the pu
propagation can be neglected. Taking this into account,
could derive a one-dimensional Schro¨dinger equation for an
arbitrary laser pulse amplitude. Using this equation and
suming a slightly relativistic nonlinearity, we obtained acc
erated soliton solutions. Moreover, such accelerated sol
laser pulses can excite electron plasma waves as well as
frequency electromagnetic waves.

The content of this paper is the following. In Sec.
starting from Maxwell’s equations and the electron equatio
of motion, we derive two sets of equations for the fast m
tion, associated with the laser field oscillations, and for
slow motion, due to ponderomotive force effects. In Sec.
we then derive the set of equations adequate for the des
tion of the propagation of pancakelike pulses. In Sec. IV
take the weakly relativistic limit and derive the correspon
ing accelerated soliton solutions. In Sec. V we discuss
various possible mechanisms for electron plasma wave e
tation and for transverse electromagnetic radiation by the
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PRE 58 4891PROPAGATION OF RELATIVISTICALLY INTENSE . . .
celerated soliton pulse. Finally, a brief summary of our
sults is given in Sec. VI.

II. BASIC EQUATIONS

Let us study the interaction of circularly polarized ele
tromagnetic waves with the plasma electrons~the ion motion
is neglected! by using Maxwell’s equations complemente
by the electron fluid equations

¹W 3BW 5
1

c

]EW

]t
1

4p

c
jW, ~1!

¹W 3EW 52
1

c

]BW

]t
, ~2!

jW52envW n52
enpW

mg
, ~3!

¹W •EW 54pe~n02n!, ~4!

]n

]t
1¹W •~nvW !50, ~5!

F ]

]t
1vW •¹ GpW 52eFEW 1

1

mcg
pW 3BW G , ~6!

whereg5A11p2/m2c2, pW 5mvW /A12v2/c2, m is the elec-
tron rest mass, and the electron temperature is zero. Ins
of using Eq.~6! we describe the motion of an electron in a
electromagnetic field by the Hamilton-Jacobi equation

]S

]t
1H2ef50, ~7!

whereS is the action,H is the Hamiltonian function for a
particle in an electromagnetic field

H5cAS PW 1
e

c
AW D 2

1m2c2, ~8!

andPW 5¹W S5pW 2(e/c)AW is the generalized electron mome
tum. Taking the gradient of Eq.~7!, we obtain the equation
of motion of the plasma electrons in the form

]pW

]t
52eEW 2mc2¹W g. ~9!

Equation~9!, which is equivalent to Eq.~6!, is more appro-
priate for our calculations. Therefore, from now on our d
cussion will be based on the set of equations~1!–~5! and~9!.

We will assume that the plasma electrons are at rest
fore the arrival of the strong electromagnetic pulse, wh
means that we can use the initial conditionpW (t0 ,rW)50. Us-
ing Eq. ~9! we can rewrite Eqs.~1! and ~2! in terms of the
momentumpW :

]

]t
¹W 3pW 5

e

c

]BW

]t
, ~10!
-

ad

-

e-
h

2e
]EW

]t
5

]2pW

]t2
1mc2

]

]t
¹W g. ~11!

Obviously, Eq.~10! allows us to write¹W 3pW 5(e/c)BW . From
Eqs.~1!, ~2!, and~9!–~11! we obtain the following equation
for the electron momentum perturbation associated with
electromagnetic wave pulse:

¹2pW t2
1

c2

]2pW

]t2
2m

]

]t
¹W g5

4pe2

mc2g
npW , ~12!

wherepW 5pW t1pW l and subscriptsl and t denote the longitu-
dinal and the vortex parts ofpW .

Let us now use dimensionless variables, defined by
following changes of notation:p/mc→p, ef/mc2→f,
n/n0→n, rWvp /c→rW, and vpt→t, where vp5(4pe2n0 /
m)1/2 is the electron plasma frequency. Equation~12! can
now be written as

¹2pW t2
]2pW

]t2
2

]

]t
¹W g5

n

g
pW , ~13!

with g5(11p2)1/2.
When the frequency of the laser pulsev0 is much larger

than the electron plasma frequencyvp , we can use the mul-
tiple time-scale method@9#. We write every physical variable
asa5^a&1ã, where the angular brackets denote an aver
over a periodt52p/v0. We will assume that these average
values vary over much longer times, typicallyt152p/vp .
Under the condition

g̃5
pW t•^pW &

^g&
!^g&,

where^g&5(11pt
21^pW &2)1/2 @14,15#, we obtain for the time

averaged variables the evolution equations

¹2^pW t&2
]2

]t2
^pW &2

]

]t
¹W ^g& 5

^n&

^g&
^pW &, ~14!

]^n&
]t

1¹W •
^n&

^g&
^pW & 50, ~15!

]

]t
^pW & 52^EW &2¹W ^g&, ~16!

¹2f5 ^n&21. ~17!

The equations for the rapidly varying quantities are obtain
from Eq. ~13!:

¹2pW t2
]2pW t

]t2
5

^n&

^g&
pW t , ~18!

BW 5¹W 3pW t , ~19!
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]pW t

]t
52EW , ~20!

where we have used the dimensionless variables define
eBW /mcvp→BW and eEW /mcvp→EW . The fast transverse mo
mentum can be represented by

pW t5
1

A2
~ êx1 i êy!p~r' ,z,t !ei ~k0z2v0t !1c.c. ~21!

and the amplitudep(r',z,t) can be written asp5aeic,
where the quantitiesa(r',z,t) andc(r',z,t) are real. From
Eq. ~16! we can also write for the longitudinal part of th
slow motion

]

]t
^p'

l & 5¹W '~f 2^g&!, ~22!

]

]t
^pz

l & 5¹W z~f 2^g&!. ~23!

Let us now multiply Eq.~22! by ¹W z and Eq.~23! by ¹W ' .
Summing the resulting equations, we can easily get@8#

¹z^p'
l & 5¹W '^pz

l &. ~24!

This relation allows us to comparêp'
l & and ^pz

l &. If the
averaged physical quantities change faster along the d
tion of propagation of the laser pulse than in the perpend
lar direction ~which is the case for pancakelike-shap
pulses! it follows from Eq. ~24! that ^p'

l & !^pz
l &:

^p'
l &

^pz
l &

;
Dz

Dr'

;
z2vgt

r'

!1. ~25!

Such a condition is satisfied in a variety of differe
physical situations related to very short laser pulses, suc
self-focusing, self-channeling, or the generation of wa
fields. We will further assume thatp̂'

2 @(pz
l )2, which means

that we can writê g& 5(11a2)1/2. Condition~25! also cor-
responds to assuming that the laser pulses change m
along the direction of its propagation and not in the perp
dicular directions. Assuming that Eq.~25! stays valid, we
can then write

pt5
1

A2
p'~r'!pi~z,t !~ êx1 i êy!ei ~k0z2v0t !, ~26!

where the perpendicular part of the vortex momentum p

turbation can be written asp'(r'5AI 0e2r'
2 /2r 0

2
), for an ini-

tial value of the laser intensity defined by a Gaussian pro
such that

p0
25a0

25I 0e2r'
2 /r 0

2
2j2/ l 0

2
, ~27!

wherej5z2@kzc
2/v(k)#t, r'5Ax21y2, r 0 and l 0 are the

transverse and longitudinal pulse dimensions, andpi(z,t) is
by

c-
-

as
e

nly
-

r-

,

an arbitrary function describing the longitudinal pulse pr
file, to be determined later. The electron plasma density
be written as

^n& 5n01Dn~z!1dn~r' ,z,t !, ~28!

wheren0 is a constant,Dn(z) characterizes the inhomoge
neity profile, anddn(r' ,z,t)5n'(r')ni(z,t) is the pertur-
bation associated with the ponderomotive force effects.

III. DERIVATION OF PROPAGATION EQUATIONS
FOR PANCAKE PULSES

So far, we have derived the general equations govern
pulse propagation in the relativistic regime. We now foc
our attention over pancakelike pulses. In this case, condi
~25! is valid and several different analytic results can
derived.

Substitutingpt from Eq. ~26! in Eq. ~18!, multiplying the
resulting equation byp'2pr'dr' , and integrating overr' ,
we obtain

2iv0S ]

]t
1

k0

v0

]

]zD pi1S ]2

]z2
2

]2

]t2D pi5@b~pi!ni21#pi ,

~29!

where we have used

b~pi!ni5@11Dn~z!#
1

BE0

` p'
2

^g&
2pr'dr'

1
ni~z,t !

B E
0

`p'
2 n'~r'!

^g&
2pr'dr' , ~30!

B5E p'
2 2pr'dr' ~31!

and k0 /v05vg is the ‘‘group’’ velocity along the axisOz.
For future use, we will also define

k'
2 5

1

BE S ]p'

]r'
D 2

2pr'dr' . ~32!

Introducing new variables (j5z2vgt,t) instead of (z,t),
Eq. ~29! becomes

2iv0

]

]t
pi1

1

gg
2

]2

]j2
pi12vg

]2pi

]t]j
5~bni21!pi , ~33!

where we havegg5(12vg
2)21/2. If we now usepi5aie

if,
then it follows from Eq.~33! that

]

]tH S v01vg

]f

]j Dai
2J 1

]

]jH S 1

gg
2

]f

]j
1vg

]f

]t D ai
2J 50.

~34!

From here follows the conservation law

E djS v01vg

]f

]j Dai
25const. ~35!
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From Eq.~33! we can also derive an equation for the pha
f, which takes the form

22v0

]f

]t
ai1

1

gg
2F ]2

]j2
ai2S ]f

]j D 2

aiG
12vgS ]2ai

]t]j
2

]f

]t

]f

]j
ai D

5@bni21#ai . ~36!

Equations~34! and ~36! can be reduced to much simple
expressions if we notice that we havev0@uvg(]/]j)u,
u]f/]ju@u]f/]tu, and u]ai /]ju@u]ai /]tu, which are valid
for underdense plasma and in the quasistationary approx
tion. Introducing a new variablex5ggj, we finally have

v0

]ai
2

]t
1

]

]xS ]f

]x
ai

2D50 ~37!

and

22v0

]f

]t
ai1

]2ai

]x2
2S ]f

]x D 2

ai5@b~ai!ni21#ai .

~38!

The solutions for these two equations can be taken in
form ai@x2 x̄(t)# and f(x,t), where x̄(t) is the coordinate
of the center of the laser pulse. The time evolution of t
coordinate will be determined in the following way. Sinc
the amplitude is assumed to be a function dependent onl
the self-similar argumenth5x2 x̄(t) and retaining only so-
lutions that vanish at infinity (h→`,ai50), we conclude
from Eq. ~37! that

f~x,t !5v0ẋ̄~ t !x1F~ t !, ~39!

whereF(t) is a function of time that can be considered a
bitrary, for the time being, but will be specified later. Su
stituting Eq.~39! into Eq. ~36!, we obtain a closed equatio
for the amplitudeai :

]2ai

]x2
2H 2v0Ḟ~ t !1v0

2ẋ̄212v0
2x

d2x̄~ t !

dt2
J ai5@bni21#ai .

~40!

Thus, starting from the fully relativistic three-dimension
equations, we could derive, for pancakelike-shaped pulse
one-dimensional nonlinear Schro¨dinger-type equation for ar
bitrary pulse amplitudes.

IV. ACCELERATED SOLITON SOLUTIONS

We now consider the above equations in the weakly re
tivistic limit, when the analytical solutions for the proble
can be carried out until the end. In this case, we can wri

^g& .12
a2

2
512

1

2
a'

2 ~r'!ai
2~x2 x̄! ~41!

and from Eqs.~15!–~17!, we can write fordn
e

a-

e

s

on

-

l
, a

-

S ]2

]t2
11D dn5¹2

a2

2
. ~42!

In this equation we can isolate that part of the density p
turbation that is concentrated in the pulse regiondnp from
the density perturbation associated with electron plas
waves left behind the pulse~usually called the wake field! N:

dn5dnp1N. ~43!

Equation~42! then leads to

dnp5¹2
a2

2
[

1

2S 1

r'

]

]r'

r'

]

]r'

1gg
2 ]2

]x2D
3a'

2 ~r'!ai
2@x2 x̄~ t !#, ~44!

S ]2

]t2
11D N52

1

2

d2x̄

dt2
¹2

]

]x
a2. ~45!

In the case of a pancakelike pulse, we can simplify Eq.~44!
to

dnp.
1

2
gg

2a'
2 ~r'!

]2

]x2
ai

2 ~46!

and, from Eq.~44!, we can write

dnp5n'~r'!ni@x2 x̄~ t !#, ~47!

where

n'~r'!5a'
2 ~r'!. ~48!

A solution of Eq.~45! that satisfies the condition of the ab
sence of a wake field att→2` takes the form

N~rW,t !5

2
1

2
a'

2 ~r'!
]3

]x3E2`

t

dt8dt9
d2x̄

dt2
sin~t2t8!ai

2@x2x̄~ t8!#.

~49!

Now we can return to Eq.~40! and consider the cas
of a weakly relativistic correction of the electron motio
in the electromagnetic field~26!. In this case, fora'

5a0'exp(2r'
2/2r0

2), we have

bni215Dn~x!2
1

2
a0'

2 S 1

2
ai

22ni D . ~50!

Then Eq.~40! becomes

]2ai

]x2
2H 2v0Ḟ~ t !1v0

2ẋ̄212v0
2x

d2x~ t !

dt2
J ai

2H Dn~x!1
a0'

2

2 S ni2
ai

2

2 D J ai50, ~51!

where we have usedni5(gg
2/2)(]2ai

2/]x2). For the first in-
tegral of Eq.~51! we find
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~12gg
2a0'

2 ai
2!S ]ai

]x D 2

2H 2v0Ḟ~ t !1v0
2ẋ̄212v0

2x
d2x̄

dt2
J ai

2

1
1

8
a0'

2 ai
22Dn~x!ai

2

1E
2`

x

dx8S 2v0
2 d2x̄

dt2
1

]Dn~x8!

]x8
D ai

250. ~52!

It follows from Eq. ~52! that

E
2`

`

dxS 2v0
2 d2x̄

dt2
1

]Dn~x!

]x D ai
250. ~53!

If we assume that the maximum value of the amplitudeai

5am corresponds to the pointx5 x̄(t), we can obtain from
Eq. ~52! an equation for the functionḞ(t):

2v0Ḟ~ t !1v0
2ẋ̄212v0

2x̄
d2x̄

dt2
1Dn~ x̄!

5
1

8
a0'

2 am
2 1

1

am
2 E

2`

x̄
dxS 2v0

2 d2x̄

dt2
1

]Dn~ x̄!

]x D ai
2~x!.

~54!

Replacing this equation in Eq.~51!, we obtain

]2ai

]x2
2H 1

8
a0'

2 am
2 12v0

2@x2 x̄~ t !#
d2x̄~ t !

dt2
1Dn~x!2Dn~ x̄!

1
1

am
2 E

2`

x̄
dxS 2v0

2d2x̄~ t !

dt2
1

]Dn~x!

]x D ai
2J ai

2
a0'

2

4 S gg
2
]2ai

2

]x2
2ai

2D ai50. ~55!

We shall assume in the following that the density of t
inhomogeneous plasma changes over distances of the
of the width of the pulse. We can then use the expansio

Dn~x!5Dn~ x̄!1~x2 x̄!
]Dn~x!

]x U
x5 x̄

1••• ~56!

and retain only the first three terms. If the conditions

am
2 @ l 0

2 ]2Dn

]x2 U
x5 x̄

,
1

am
2 E

2`

x̄
~x2 x̄!ai

2dx!1 ~57!

are satisfied, we obtain for the amplitude ofai

]2ai

]x2
2

a0'
2 am

2

8
ai1

a0'
2

4
ai

32
gg

2a0'
2

4

]2ai
2

]x2
ai50. ~58!

If we neglect the last term in this equation, which describ
the variation of electron density due to ponderomotive fo
terms, the relativistic corrections alone lead to the soli
solution
der

s
e
n

ai5
am

chS x2 x̄~ t !

d
D , ~59!

where the soliton width is equal tod52A2/a0'am and the
coordinate of the soliton center is, according to Eqs.~53! and
~56!, given by

d2x̄

dt2
52

1

2v0
2

]Dn

]x U
x5 x̄

. ~60!

This equation shows that a plasma inhomogeneity implies
acceleration of the soliton. Replacing Eqs.~59! and ~60! in
Eq. ~49!, we can find the explicit form of the density distr
bution associated with the emitted electron plasma wave

We now analyze the soliton motion for specific forms
the density profile of an inhomogeneous plasma. For a lin
profile defined byDn(x)52v0

2acx, the motion of the soliton
center is described, according to Eq.~60!, by the formula

x̄~ t !5 x̄01vgt2
1

2
act

2, ~61!

where x̄0 is the initial value of thex̄ coordinate and the
soliton acceleration is constant and equal to2ac . This
means that, depending on the sign of the electron den
gradient along the soliton propagation, the soliton will slo
down if ac.0 and will accelerate whenac,0. The soliton
velocity will then bev5vg2act.

Another interesting case corresponds to a quadratic in
mogeneityDn(x)5v0

2ac
2x2. Here Eq.~60! shows that the

soliton can oscillate periodically around a given pointx50.
We now write down the solution of Eq.~58! for the

asymptotic conditionai(1`)5]ai /]xux→1`50. The first
integral of Eq.~58! takes the form

~12au2!S ]u

]yD 2

2u2~12u2!50, ~62!

where we have useda5gg
2a0'

2 am
2 /2, y5a0'amx/2A2, and

u5ai /am . Equation~62! is interesting because it leads
solutions distinct from Eq.~59! when u2.1/a. After inte-
gration, we get from Eq.~62!

2
1

2
ln

A12au21A12u2

A12au22A12u2
1a1/2ln~a1/2A12u21A12au2!

56@y2 ȳ~ t !#. ~63!

If we takea50, this equation reduces to Eq.~59!.
We can now use Eq.~63! to explore the different qualita

tive features of the soliton solutions. In Fig. 1 we plot t
solution of Eq.~63! as a function of time for the accelerate
ac,0 and decelerated caseac.0. As expected from the
analysis of Eq.~61!, the soliton accelerates forac,0 @Fig.
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1~a!#, but forac.0 @Fig. 1~b!# the soliton velocity decrease
until the soliton is reflected and then bounces back with
velocity now increasing.

Another important feature is the qualitative dependence
the soliton solutions on the parametera. For 0,a,1, the
solution is close to the usual solution given by Eq.~59!,
getting more peaked around the soliton centroid fora close
to 1. On the other hand, ifa.1, cusp soliton solutions ar
obtained~Fig. 2!.

V. RADIATION MECHANISMS

We shall now give a detailed description of the seve
different mechanisms of emission of low-frequency elect
magnetic waves by accelerated short laser pulses in a pla
We have already mentioned the possibility of excitation
irrotational electric fields and the emission of electr
plasma waves in an inhomogeneous plasma, as describe
Eq. ~49!. Now we shall pay attention to the generation

FIG. 1. Soliton solution of Eq.~63! as a function of the param
eter a: 0.0 ~solid line!, 0.5 ~short-dashed line!, 0.99 ~long-dashed
line!, 2.0 ~medium-dashed line!, and 3.0~dash-dotted line!.

FIG. 2. Soliton evolution as a function of time:~a! accelerated
@ac520.10 in Eq.~61!# and ~b! decelerated (ac510.10) motion
of the soliton center fora50.5 andvg51.
s

of

l
-
a.

f

by
f

transverse electromagnetic low-frequency waves~or the gen-
eration of rotational currents! by ponderomotive forces or by
parametric resonance in an inhomogeneous relativi
plasma. We shall show that, even for a homogene
plasma, relativistic effects due to a short laser pulse can g
erate low-frequency rotational electromagnetic fields.

In order to write down the equations for the low
frequency magnetic field, we take the rotational electrom
netic field of Eq.~13! and use Eq.~10!. The result is

H ¹22
]2

]t2
2

^n&

^g&J ^BW & 5¹W S ^n&

^g& D3^pW &, ~64!

where

^n&

^g&
5

11Dn~x!1dn~r' ,x,t !

A11a'
2 ~r'!ai

2~z,t !
. ~65!

We shall consider Eq.~64! in two different cases. The firs
one corresponds to nonrelativistic laser pulses for which
can takê g& .1. We also assume thatuDn(x)u@udnu. Then
the emission of low-frequency electromagnetic waves is
to the inhomogeneity of the electron plasma density or
associated acceleration of laser pulses

¹W @Dn~x!#3vW Þ0, ~66!

where the velocity is determined by Eq.~16!.
On the other hand, ifDn(x)50 ~homogeneous plasma!

and if the variation of the densitydn due to the ponderomo
tive force effects is negligible, the mechanism of electrom
netic wave emission is a pure relativistic effect

¹W
1

^g&
3^pW & Þ0. ~67!

It is then clear that low-frequency electromagnetic waves
be emitted due to either electron plasma density inhomo
neity or relativistic mass correction effects. We also want
mention that the result~67! is valid at a distance from the
focus of the laser pulse. In the focal region,d^g& <dn and
the general expression~65! must be used.

Finally, we consider a short laser pulse such that its ini
intensity shape can be taken as a rectangular parallelep
with sidesr 0 and e0. We assume that the electron mass
modulated in time according to

m5m0^g& 5m0@11a0
2~11e cos 2Vt !#1/2, ~68!

where e is the modulation depth andV is the modulation
frequency of the electromagnetic wave pulse. In this case
neglect the right-hand side of Eq.~64! and assuming that the
electron density modulation is weak when compared to
relativistic factor^g&, Eq. ~64! reduces to

d2^B&

dt2
1k2^B&1

^B&

A11a0
2~11e cos 2Vt !

50. ~69!

If, furthermore, the modulation depth is small and we ha
a0

2e!1, this equation takes the form of a Mathieu equati
for which well known conditions exist for unstable modes
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A similar equation for the parametric resonance case
derived before@2# and studied numerically@4,33#. It was
shown that unstable solutions for Eq.~69! could be found for
V;Ak2c21vp

2!v0, for the small amplitude case (a0
2!1).

V is the typical frequency of the emitted low-frequency ele
tromagnetic waves. For resonance the growth rate isG
5 1

16 (vp
2/V2)a0

2 . Time amplitude modulated pulses can th
emit low-frequency electromagnetic waves in a more e
cient way than the usual mechanisms based on inhomog
ity of the background plasma or ponderomotive force effe

VI. CONCLUSION

In this work we have considered the interaction of
intense and short laser pulse with an inhomogeneous pla
We have used a relativistic formulation but considered
cold-electron–ion plasma and neglected the ion motion.

We focused our attention on the important case of p
cakelike pulses, such as those currently produced in inte
laser-plasma interaction experiments. In this case, a o
dimensional nonlinear Schro¨dinger equation could be de
s
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rived for arbitrary pulse amplitudes. Using a purely analy
cal approach, we were able to show that the pulse shap
changing along the propagation, due to relativistic effects
the weakly relativistic limit, such pulses could be adequat
described by soliton-type solutions.

Moreover, we could show that the plasma inhomoge
ities, not only induce the above-mentioned pulse shape va
tion, but also lead to pulse acceleration, which was pre
ously observed for other kinds of pulses. Such a pu
acceleration produces radiation fields, similar to those of
celerated charged particles. Different kinds of mechanism
radiation were identified, leading to the emission of lo
frequency electromagnetic waves and to the production
electron plasma waves~usually known as wake fields!.

Our results can eventually be useful in the interpretat
of laser-plasma experiments and in the identification of
observed radiation processes. In particular we suggest
the soliton solutions for the pulse shape and its change a
propagation, both derived here, can be identified in exp
ments and numerical simulations in the near future.
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